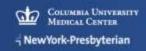
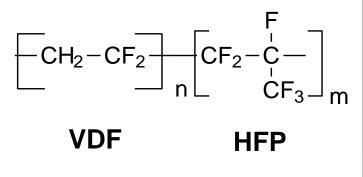
XIENCE Safety: Review of XIENCE DAPT Clinical Evidence and Clinical Program

Gregg W. Stone, MD

Columbia University Medical Center NewYork-Presbyterian Hospital Cardiovascular Research Foundation

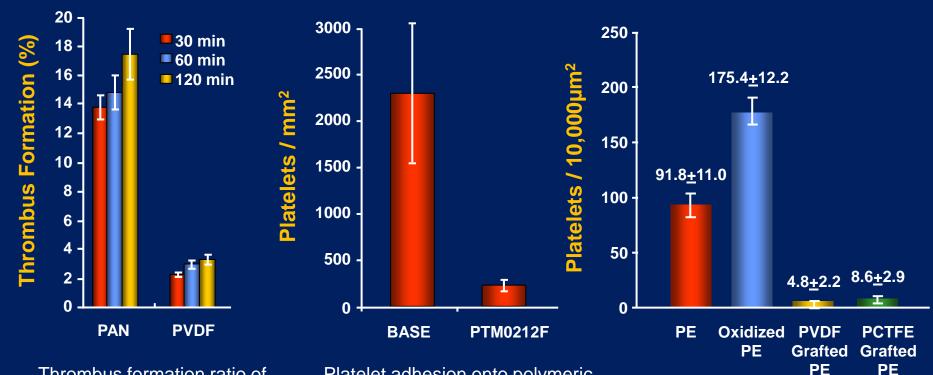


Disclosures


• None

Xience Drug Matrix: Fluorinated Copolymer

- Ultra-pure random copolymer composed of (VDF) and (HFP) monomers
- Used in cardiovascular, neurological and ophthalmic sutures
- VDF-HFP ratio allows for optimization of coating elasticity (from elastomeric properties - avoids cracking or splitting during stent expansion) and toughness (from high crystallinity – doesn't crack or peel during stent delivery)
- Durable C-C backbone and covalent C-F bonds provide excellent stability and high biocompatibility



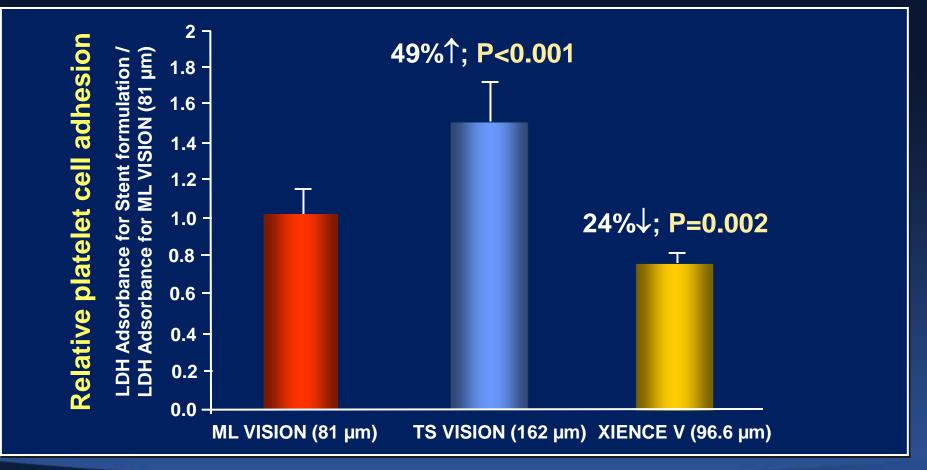
VDF = vinylidene fluoride HFP = hexafluoropropylene

COLUMBIA UNIVERSITY

NewYork-Presbyterian

The Concept of Fluoropassivation Fluoropolymer coated surfaces are platelet and thromboresistant in blood-contact applications

Thrombus formation ratio of PAN/PVDF blend membranes after 30, 60 and 120 min incubation (n=3)

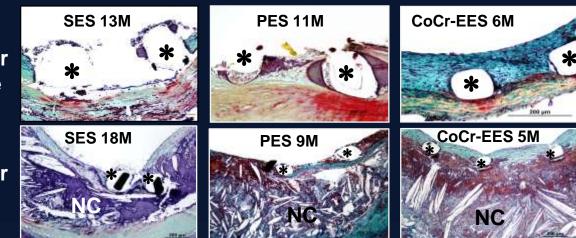

Ting-Yu Liu et al. Polym. Adv. Technol. 2005;16:413–419 Platelet adhesion onto polymeric surfaces after 15 min exposure to blood at 150 rpm (37° C); Platelet count measured using ⁵¹Cr method

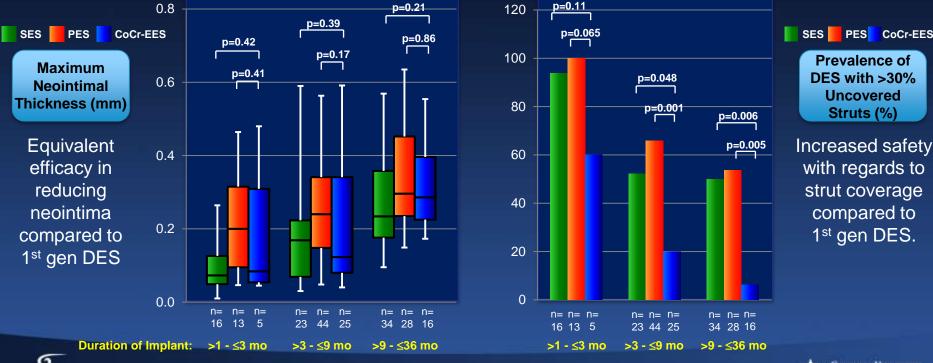
Massa TM et al. J Biomed Materials Research Part A DOI 10.1002/jbm.a Platelet adhesion density of PE and various modified PEs

Jui-Che Lin et al. J Biomater Sci Polymer. 2000;11:701–714

Stent Thrombosis is Affected by Stent Design, Deployment and Polymer Impact of strut thickness and Xience V polymer coating

In vitro pulsatile Chandler loop model with porcine blood


Kolandaivelu K et al. Circulation 2011;123:1400-1409


Medical Center

204 lesions (SES=73; PES=85; CoCr-EES=46) from 149 autopsy cases with implant duration >30 days and ≤3 years

Greater strut coverage with DES for less inflammation, less **Stable** fibrin deposition, and less CAD late and very late stent thrombosis - but similar **DES** for rates of neoatherosclerosis ACS and fracture-related adverse pathological events

on the James

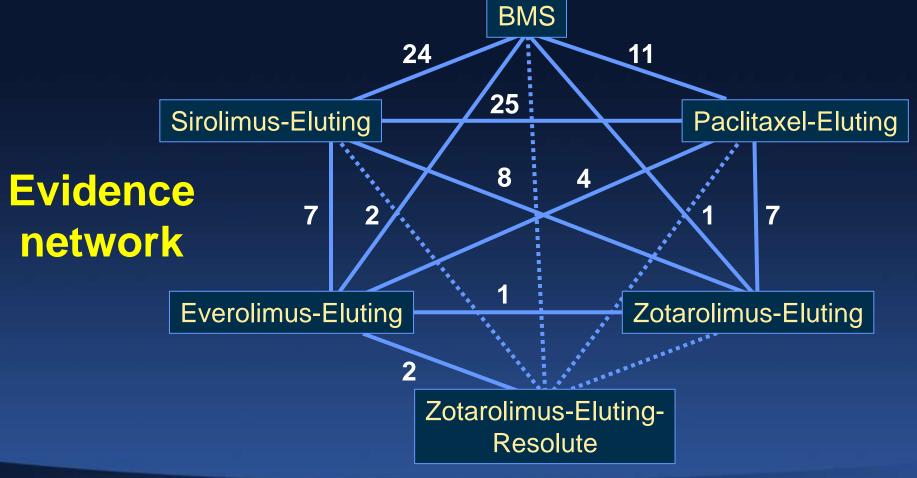
COLUMBIA UNIVERSITY MEDICAL CENTER - NewYork-Presbyterian

CoCr-EES

PES

Prevalence of

Uncovered


Struts (%)

compared to

1st gen DES.

Otsuka et al. Circulation 2014;129:211-23

Bangalore S et al. Circulation 2012;125:2873-91

NewYork-Presbyterian

COLUMBIA UNIVERSITY

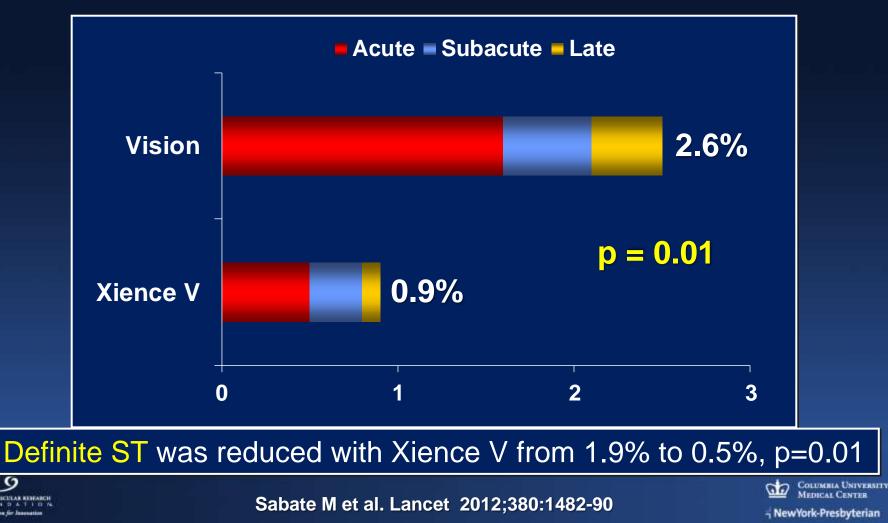
Network Meta-analysis: 1-year Definite ST 77 RCTs, 57,138 pts, 117,762 pt-yrs of FU

		Favors OR	Favors	
Control	Treatment	Treatment (95% Cr) Control	OR [95% Crl]
BMS (Ref)	Sirolimus			0.75 (0.45, 1.20)
	Paclitaxel			0.81 (0.51, 1.48)
	Everolimus			0.27 (0.14, 0.55)
	Zotarolimus-E	· · · · · · · · · · · · · · · · · · ·		1.34 (0.63, 3.21)
	Zotarolimus-R	<u></u>		0.41 (0.41, 12.53)
Sirolimus (Ref)				0111 (0111, 12100)
	Paclitaxel			1.10 (0.66, 1.91)
	Everolimus			0.36 (0.20, 0.70)
	Zotarolimus-E			1.79 (0.91, 4.04)
	Zotarolimus-R		•	2.73 (0.60, 16.87)
Paclitaxel (Ref)	<u> </u>			
	Everolimus			0.34 (0.18, 0.61)
	Zotarolimus-E		—	1.70 (0.76, 3.60)
	Zotarolimus-R		•	2.52 (0.51, 14.79)
Everolimus (Ref)				
	Zotarolimus-E			5.16 (2.09, 12.31)
	Zotarolimus-R		—	7.44 (1.88, 39.43)
Zotarolimus-E (Ref	f)			
	Zotarolimus-R			1.55 (0.29, 9.83)
	0.10	1.00		10.00

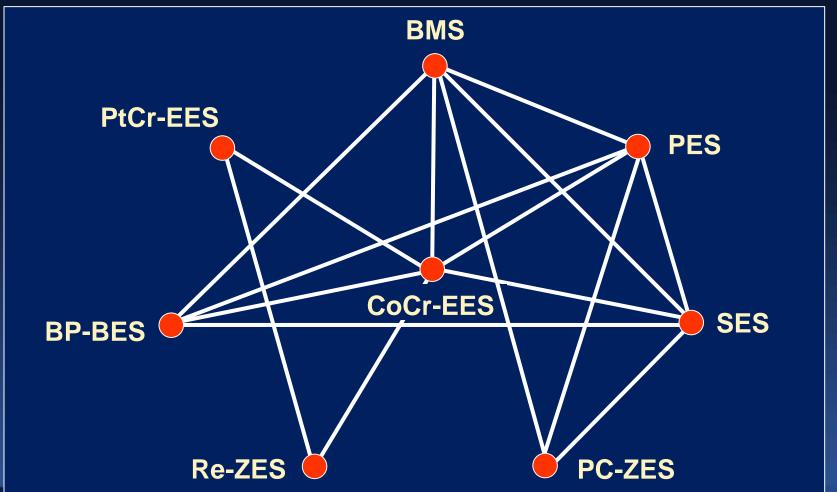
- NewYork-Presbyterian

ERSTIN

Network Meta-analysis: Long-term Definite ST 77 RCTs, 57,138 pts, 117,762 pt-yrs of FU


ARDIOVISCULAR RESEARCH D. U. H. D. A. T. I. O. N. A Paulae for Instruction

Bangalore S et al. Circulation 2012;125:2873-91

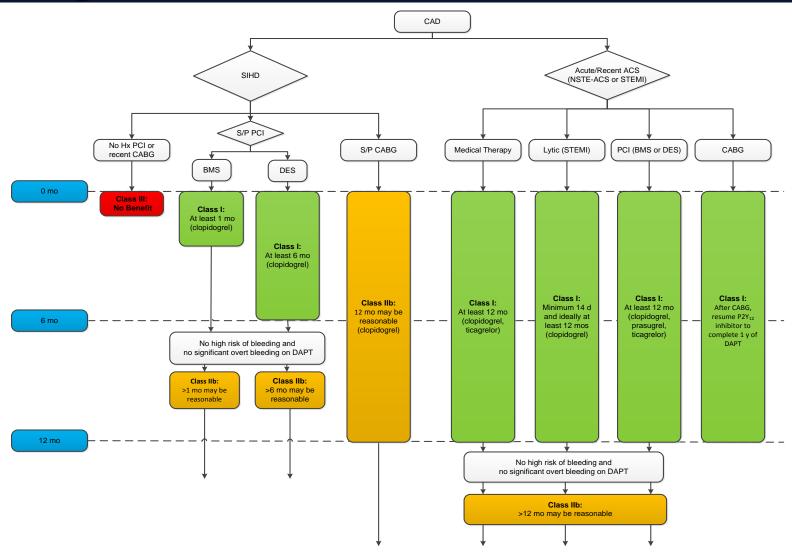

- NewYork-Presbyterian

EXAMINATION Trial

1504 pts with STEMI undergoing PCI within 48° (85% primary PCI within 12°) were randomized to Xience V EES vs. Vision BMS Stent thrombosis (Def/prob) within 1 year

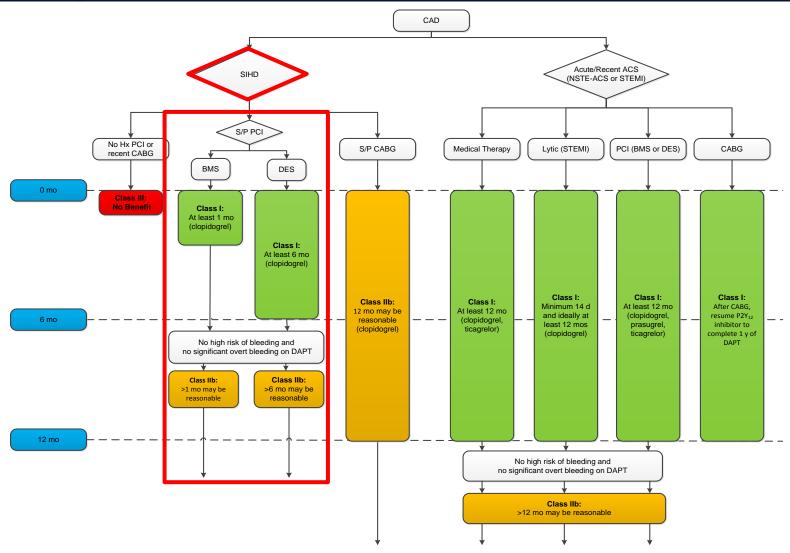
Bioabsorbable Polymer-based DES Meta-analysis of 89 RCTs, 84,590 pts Evidence Network

Palmerini T et al. JACC 2014;63:299-307

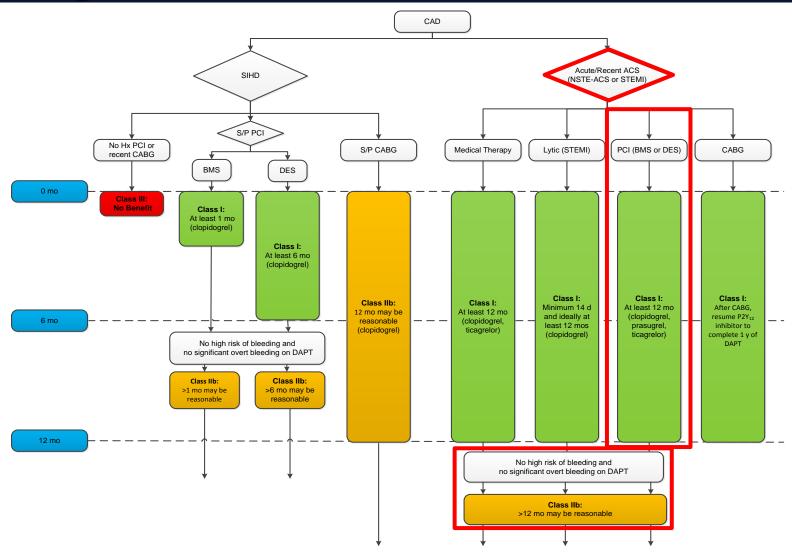

Bioabsorbable Polymer-based DES Meta-analysis of 89 RCTs, 84,590 pts Stent Thrombosis

	1-year	OR (95%CI)	Long-ter	' <mark>M</mark> HR (95%CI)
BP-BES vs BMS	H	0.61 (0.38-0.94)	⊢ +−-1	0.60 (0.40-0.89)
BP-BES vs PES	H	0.65 (0.39-1.05)	⊢→→	0.52 (0.31-0.81)
BP-BES vs SES	H	0.99 (0.64-1.52)		0.72 (0.47-1.07)
BP-BES vs PC-ZES	H	0.61 (0.34-1.10)		0.81 (0.48-1.33)
BP-BES vs Re-ZES	— —	1.02 (0.44-2.32)		0.83 (0.34-1.81)
BP-BES vs CoCr-EES	H	1.54 (0.95-2.56)	⊢ ++1	1.25 (0.74-2.00)
BP-BES vs PtCR-EES	⊢ → – 1	1.75 (0.58-5.28)	► -	1.41 (0.56-4.00)
0.01 0.1	1 10	100 0.1		10
Favors s	tent 1 Favors	stent 2 Fa	vors stent 1 Favo	ors stent 2

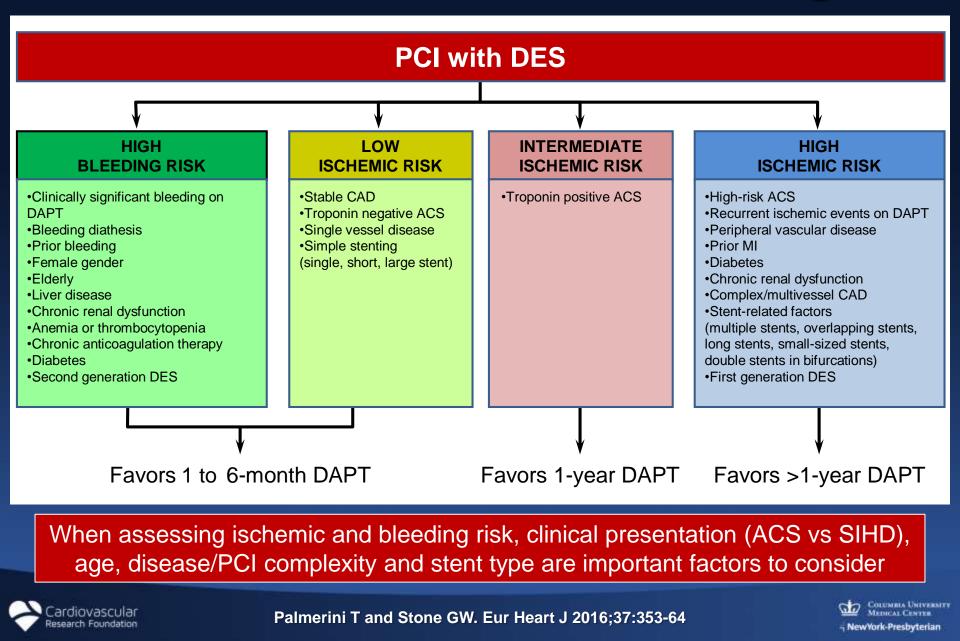
Palmerini T et al. JACC 2014;63:299-307

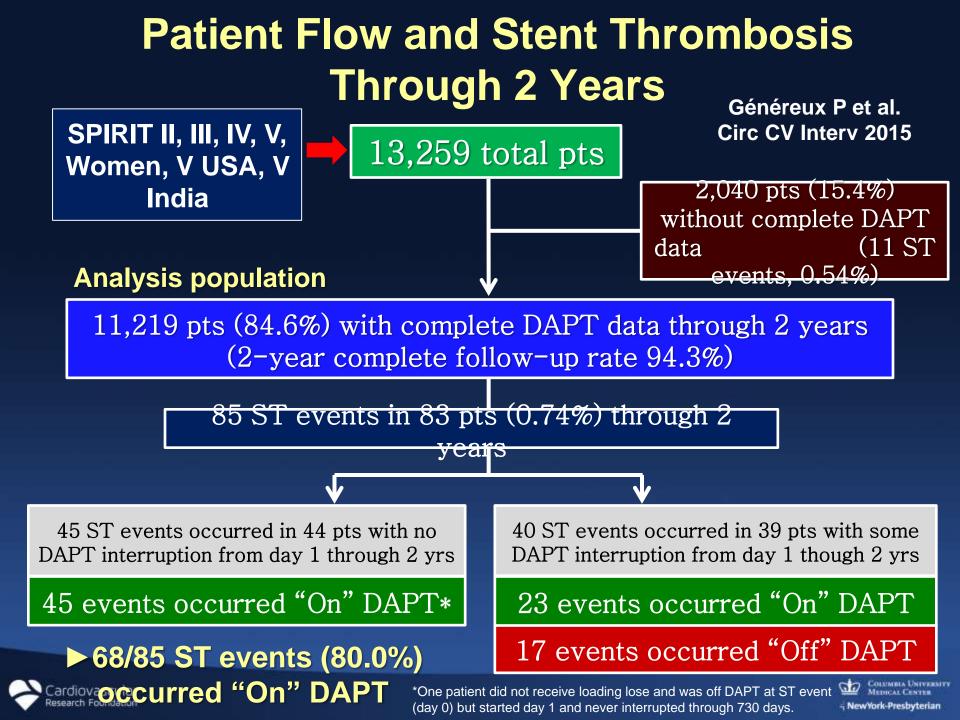

2016 ACC/AHA Guidelines: Updated Algorithm for DAPT Duration in CAD

Levine GN et al. J Am Coll Cardiol. 2016;68:1082-115


2016 ACC/AHA Guidelines: Updated Algorithm for DAPT Duration in CAD

Levine GN et al. J Am Coll Cardiol. 2016;68:1082-115


2016 ACC/AHA Guidelines: Updated Algorithm for DAPT Duration in CAD

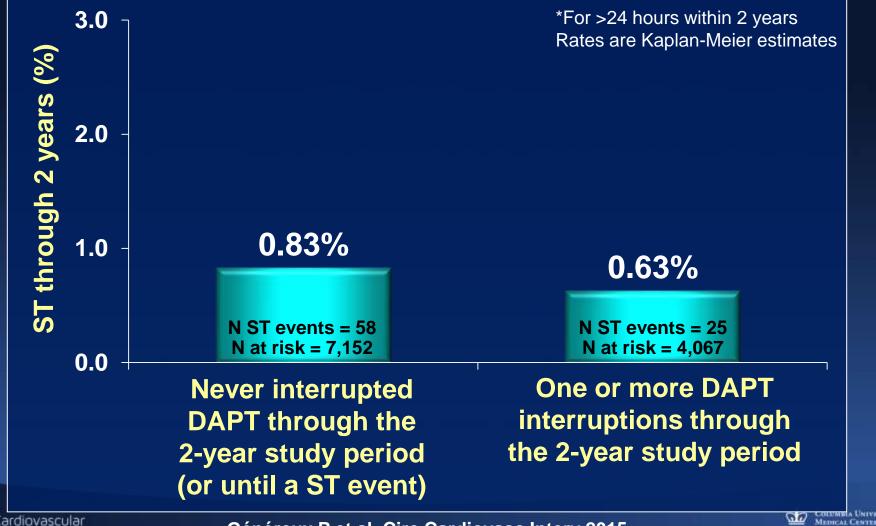


Levine GN et al. J Am Coll Cardiol. 2016;68:1082-115

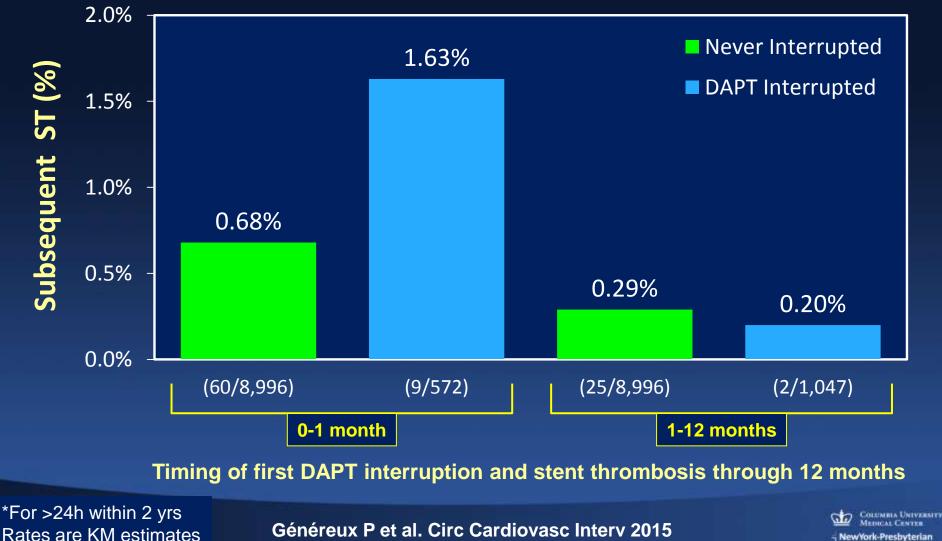
DAPT Duration: Factors to be weighed

Timing of First DAPT Interruption

4,080/11,219 (36.4%) XIENCE V pts interrupted DAPT one or more times during the 2-year follow-up period


Timing of the first DAPT interruption					
Between 0-1 months:	520 (4.6%)				
Between 1-3 months:	151 (1.4%)				
Between 3-6 months:	301 (2.7%)				
Between 6-12 months:	1,273 (11.4%)				
Between 12-24 months:	1,835 (16.4%)				

Généreux P et al. Circ Cardiovasc Interv 2015


Stent Thrombosis in Patients With and Without DAPT Interruption* Through 2 Years N = 11,219 Xience V pts

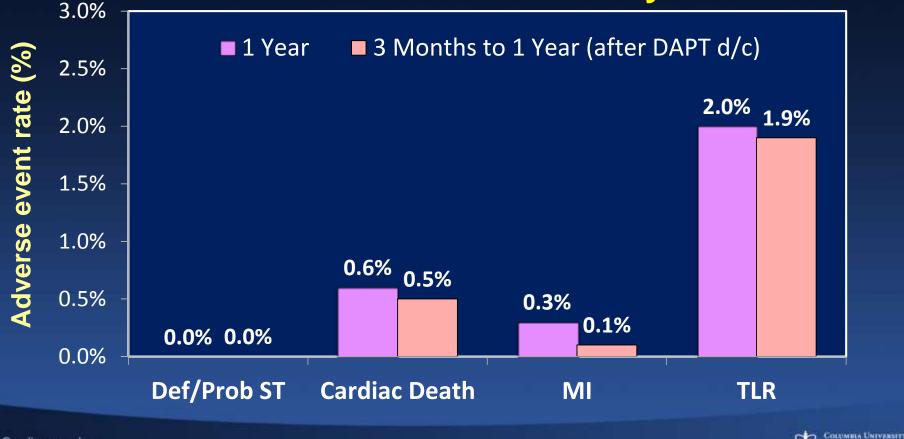
Généreux P et al. Circ Cardiovasc Interv 2015

- NewYork-Presbyterian

Stent Thrombosis in Patients With and Without DAPT Interruption* Through 2 Years N = 11,219 Xience V pts

- NewYork-Presbyterian

Stent Thrombosis According to the Timing of <u>Permanent</u> DAPT Interruption*


Stent thrombosis through the entire 2- year follow-up period:	ST, % No DAPT interruption except possibly after ST	ST, % Permanent DAPT discontinuation in this interval*	HR [95% CI]	P Value
Between 0 and 1 mos	0.83% (58) (N at risk = 7,152)	4.95% (11) (N at risk = 229)	6.13 [3.22, 11.68]	<0.0001
Between 1 and 3 mos	0.83% (58) (N at risk = 7,152)	2.78% (2) (N at risk = 76)	3.38 [0.82, 13.82]	0.07
Between 3 and 6 mos	0.83% (58) (N at risk = 7,152)	0.78% (1) (N at risk = 146)	0.85 [0.12, 6.13]	0.87
Between 6 and 12 mos	0.83% (58) (N at risk = 7,152)	0.45% (4) (N at risk = 934)	0.52 [0.19, 1.43]	0.20
Between 12 and 24 mos	0.83% (58) (N at risk = 7,152)	0.16% (3) (N at risk = 1,925)	0.19 [0.06, 0.60]	0.002
Between 0 and 24 mos * Or until the time of a ST	0.83% (58) (N at risk = 7,152)	0.64% (21) (N at risk = 3,310)	0.77 [0.47, 1.27]	0.30
				COLUMBIA UNIVERSIT

Généreux P et al. Circ Cardiovasc Interv 2015

STOPDAPT Study: 3-Month DAPT After XIENCE (n=1,525 at 58 Japanese sites)

39.6% diabetes, 31.6% ACS (13.3% STEMI), 1.4 stents/pt, 33 mm stent length Thienopyridine was discontinued within 4 months in 1,444 pts (94.7%)

Event rates within 1 year

Natsuaki M et al. Cardiovasc Interv and Ther 2015

- NewYork-Presbyterian

XIENCE 90: High-bleeding risk pts

2000 pts at ~100 US sites

High bleeding risk (one or more of the following):

- Age ≥ 75 years
 Chronic oral anticoagulation therapy
 History of major bleeding
- Thrombocytopenia or coagulation disorder
 - Anemia
 - History of stroke
 - Chronic kidney disease

Key exclusion criteria: STEMI; LVEF <30%; LM; total occlusion; graft; ISR, thrombus containing lesion; judged by physician as inappropriate for discontinuation from P2Y12 inhibitor use at 3 months

1-year follow-up

Primary endpoint: All-cause death or MI between 3 and 12 months in pts who are event-free and compliant with DAPT at 3 months, powered for noninferiority against a propensity-adjusted historical control group treated with standard DAPT

ClinicalTrials.gov Identifier: NCT03218787

COLUMBIA UNIVERSITY MEDICAL CENTER - NewYork-Presbyterian

XIENCE 28: High-bleeding risk pts

800 pts at ~50 EU and Asian sites

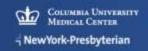
High bleeding risk (one or more of the following): Age ≥ 75 years Chronic oral anticoagulation therapy History of major bleeding

- Thrombocytopenia or coagulation disorder
 - Anemia
 - History of stroke
 - Chronic kidney disease

Key exclusion criteria: STEMI; LVEF <30%; LM; total occlusion; graft; ISR, thrombus containing lesion; judged by physician as inappropriate for discontinuation from P2Y12 inhibitor use at 3 months

1-year follow-up

Primary endpoint: All-cause death, MI, ST, stroke or major bleeding between 1 and 6 months in pts who are event-free and compliant with DAPT at 1 month, powered for noninferiority against a propensity-adjusted historical control group Rx w/standard DAPT



ClinicalTrials.gov Identifier: NCT03355742

Conclusions: Safety of Early DAPT Discontinuation After Xience Stent Implantation

- Fluoropolymer-coated EES have been associated with the lowest ST rates of all DES, and with lower ST than BMS
- Available data suggest that DAPT discontinuation in EES-treated pts is safe after 3 months
- Large-scale single-arm studies are ongoing to determine the safety of discontinuing DAPT after 90 days and 28 days in high-bleeding risk patients treated with Xience EES

